
Clocked Population Protocols
James Aspnes

∗

Yale University, Department of Computer Science.

james.aspnes@gmail.com

ABSTRACT
Population protocols are required to converge to the correct answer,

and are subject to a fairness condition that guarantees eventual

progress, but generally have no internal mechanism for detecting

when this progress has occurred. We define an extension to the

standard population protocol that provides each agent with a clock

signal that indicates when the agent has waited long enough. To

simplify the model, we represent “long enough” as an infinite time

interval, and treat a clocked population protocol as operating over

transfinite time. This gives a clean theoretical model that we show

how to translate back into finite real-world executions where the

clock ticks whenever the underlying protocol is looping or stuck.

Over finite time intervals, the protocol behaves as in the standard

model. At nonzero limit ordinalsω,ω ·2, etc., corresponding to clock
ticks, the protocol switches to a limit of previous configurations

supplemented by an signal registering in an extra component in

some of the agents’ states. Using transfinite timesmeans that we can

represent fairness over sequences of transitions that may include

clock ticks with the same definition as over smaller intervals. Using

arbitrary ordinals allows using times like ω2
or ω3

to represent

convergence that depends on detecting convergence repeatedly at

lower levels.

We show that a clocked population protocol running in less than

ωk
time for any fixed k ≥ 2 is equivalent in power to a nondeter-

ministic Turing machine with space complexity logarithmic in the

size of the population. A consequence of this equivalence is that

any symmetric predicate that can be computed in less than ωk
time

can be computed in less than ω2
time, which requires only finitely

many clock ticks.

1 INTRODUCTION
A population protocol [1] consists of a collection of finite-state

agents that interact in pairs. If the scheduling of these interactions

is random, population protocols or the closely-related model of

chemical reaction networks can, with high probability, perform

computations limited only by the number of distinct configurations

of the population as a whole [2, 16]. But in the standard model,

∗
Supported in part by NSF grants CCF-1637385 and CCF-1650596.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC ’17, July 25-27, 2017, Washington, DC, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-4992-5/17/07. . . $15.00
http://dx.doi.org/10.1145/3087801.3087836

scheduling is adversarial, and as a result standard population proto-

cols with a complete interaction graph can only compute predicates

definable in first-order Presburger arithmetic [3], a restriction that

allows addition, parity, and majority, but that removes even such

basic operations as multiplication.

The fundamental limitation of population protocols that yields

this result is that while a population protocol is only required to

converge to the correct answer in the limit, individual agents cannot

determine when this convergence occurs. This makes it difficult

to compose population protocols sequentially, and puts even such

basic programming tools as nested loops out of reach. One of the

key tools in showing that randomized population protocols can

perform more sophisticated computations is a phase clock that

allows the population to detect, with high probability, when enough

time has elapsed that its current task is complete.

An explicit mechanism used to detect termination is the absence
detector of Michail and Spirakis [14]. The absence detector acts

like an extra agent in the population, that provides a bit-vector

indicating the presence or absence of each other state in the pop-

ulation. Michail and Spirakis show that an absence detector can

be implemented by a weaker object called a cover-time service,
which provides an upper bound on the cover time of a random

walk, allowing an agent to deduce when it has successfully en-

countered every other agent in the system. They show that with

a cover-time service, the power of a population protocol with n
agents lies between SPACE(logn) and NSPACE(logn), when both

are restricted to symmetric inputs. We can think of this cover-time

service, like the internal clocks of randomized population protocols

and chemical reaction networks, as instances of a family of possible

clock mechanisms whose function is to tell a protocol when it has

waited long enough to converge.

We propose an extension to the population protocol model that

makes such clocks explicit without committing to any specific im-

plementation: a clock oracle that signals to one or more agents

when the population has either converged or started looping, a con-

dition formally modeled by reaching a configuration that will recur

infinitely often in the future. Such clocked population protocols
are capable of carrying out any computation that is feasible for a

Turing machine with equivalent storage capacity: specifically, with

a population of size n, whose state can be represented in Θ(logn)
space, a clocked population protocol can compute any symmetric

predicate on the agents’ initial states that can be computed by a

nondeterministic Turing machine that also uses Θ(logn) space
An advantage of showing that clocked population protocols have

power equivalent to NL is that we can use closure results on NL to

program clocked population protocols. For example, the Immerman-

Szelepcsényi Theorem [12, 17] and the resulting collapse of the

logspace hierarchy mean that clocked population protocols can not

only compute NL predicates, but can effectively use NL computa-

tions as subroutines. We use this fact to demonstrate that many

Session 9 PODC’17, July 25-27, 2017, Washington, DC, USA

431

https://doi.org/http://dx.doi.org/10.1145/3087801.3087836

natural extensions of the clocked population protocol model turn

out to be equivalent in power.

An issue that arises in clocked population protocols is how to

keep track of time. At the lowest level, we still have protocol
transitions in which individual pairs of agents encounter one

another and update their state as defined by the standard transition

relation. But at a higher level, we have clock transitions where
some of the agents in a configuration receive ticks that indicate
that a clock cycle has completed. We would like to have a method

for indexing events in a protocol that clearly distinguishes between

protocol transitions and clock ticks. The method we use is to assign

each event to an ordinal number, a generalization of the natural

numbers that includes transfinite elements.

In this representation, the ordinary passage of time is repre-

sented by finite intervals, while clock ticks occur at limit ordinals

ω, ω · 2, ω · 3, etc. A typical time for an event might be something

like ω · 3 + 28. This is an event that follows 3 clock ticks—each ar-

riving after what might a very long sequence of ordinary protocol

transitions—followed by 28 ordinary protocol transitions. By using

ordinals, we allow for the possibility of introducing “higher-order”

clock ticks, indicating longer intervals ω2
, ω3

, and so forth, during

which even infinitely many lower-order clock ticks still leave the

protocol stuck. The use of ordinal arithmetic for this purpose allows

us to define a consistent rule for what configurations are eligible

to appear at these times (essentially any configuration that occurs

without bound in the interval leading up to the limit ordinal), as

well as a straightforward extension of the usual global fairness

condition for standard population protocols to clocked population

protocols.

Though the transfinite-execution model is not something one

could reasonably expect to implement in practice, we show that

it is equivalent to a finite-execution model where clock ticks are

delivered once the protocol reaches a terminal strongly-connected

component in an appropriately-defined graph. In addition to giving

a practical rule for deciding when to send in a clock tick, this also

shows that output-stable clocked population protocols compute

symmetric functions in P, and that output-stable clocked population
protocols that finish in less than ωk

time for any fixed, finite k ,
compute symmetric functions in NL. Together with the converse

result on simulating NL, this in fact shows that a transfinite clock

hierarchy based on counting layers of increasingly patient clocks

never gets off the ground: any protocol that finishes in less than ωk

time computes the same function as a protocol that finishes after

receiving finitely many first-order clock ticks.

The goal of this work is to explore the effect of adding clocks

to population protocols, and to this end we consider primarily the

simplest model with a complete interaction graph and a generic

clock. We consider some variants on the clock mechanism and

show that for the most part they compute the same functions. In

the conclusion, we briefly discuss additional possible extensions of

the model.

1.1 Other related work
Adding a clock is not the only way to increase the power of the

standard population protocol model. The community protocol

model of Guerraoui and Ruppert [10], which allows agents to re-

member the identities of a constant number of other agents, boosts

the power of a system with n agents to decide any language in

NSPACE(n logn). The still stronger mediated population pro-
tocol model of Chatzigiannakis et al. [8], which stores informa-

tion on edges between agents, boosts this power still further to

NSPACE(n2) [6]. It is also possible to expand the space in each

agent, which isO (1) in the standardmodel. Chatzigiannakis et al. [7]
have shown that even a modest extension to Θ(logn) bits per agent
allows computations of symmetric predicates in NSPACE(n logn)
(as in the community protocol model), while smaller extensions

up to o(log logn) still limit population protocols to the semilinear

predicates computable in the standard model.

Unfortunately, the substantial computational power of these

extensions argues against their practical application. In contrast,

the merely NL ⊆ P power of previous mechanisms for detecting

termination inside a population protocol or similar model [2, 14, 16]

suggests that such mechanisms are more likely to be realizable in

a physical system that runs for a reasonable amount of time. We

consider the present work to be firmly in this tradition, even though

for purposes of analysis we find it convenient to model the intervals

between clock ticks using transfinite time.

The idea of modeling computation over transfinite time has

precedent in work on transfinite Turing machines [11] as a model

for supertasks [18], a concept extensively studied in the philo-

sophical literature. A supertask is a task that involves an infinite

number of steps (often taken as occurring over decreasing time

intervals whose sum converges to a finite bound), and the problem

of characterizing sensible outcomes of supertasks goes as far back

as Zeno’s Paradox. In a sense, clocked population protocols are

carrying out supertasks, but our choice for the behavior of these

systems in the limit is less open to controversy, because it is im-

plied by the goals of the model. Our purpose is only to represent

waiting long enough that further waiting will have no effect on the

possible outcomes of a protocol. Were we actually modeling infinite

computations, a different limit definition (for example, taking the

limit of each agent’s state separately) might be more appropriate.

1.2 Ordinals and ordinal arithmetic
In this section, we give a brief overview of the ordinal numbers,
a generalization of the natural numbers that include infinite values.

More details on the ordinals can be found in any textbook on set

theory, for example in Chapter 2 of Jech [13].

Formally, an ordinal number is an equivalence class over totally-

ordered sets (S, ≤) that are well-ordered, meaning that every sub-

set T of S has a least element. A standard construction due to von

Neumann [19] represents each ordinal as the set of all smaller

ordinals, so that 0 is represented by the empty set ∅, 1 = {0},

2 = {0, 1}. The finite ordinals 0, 1, 2, . . . are the natural num-
bers. The first infinite ordinal, denoted ω, is just the set of all finite
ordinals {0, 1, 2, . . .}.

In this representation, α ≤ β if α is a subset of β , α < β if α
is an element of β , the minimum of a set of ordinals is just their

common intersection, the successor α + 1 of an ordinal α is repre-

sented by α ∪ {α }, and the supremum of a set of ordinals is their

union. For example, ω + 1 is represented by {0, 1, 2, . . . ;ω}, ω + 2 by

Session 9 PODC’17, July 25-27, 2017, Washington, DC, USA

432

{0, 1, 2, . . . ;ω,ω + 1}, and so on. Not every ordinal is a successor.

An ordinal (like 0 or ω) that is not a successor of any other ordinal

is called a limit ordinal.
We adopt the usual convention that arbitrary ordinals are de-

noted by lowercase Greek letters, while finite ordinals are denoted

by lowercase Latin letters.

Ordinal arithmetic is defined using operations on the correspond-

ing ordered sets. Addition corresponds to concatenation: the ordinal

ω+ω consists of two copies ofω laid end-to-end, and is represented

in set form by {0, 1, 2, . . . ;ω,ω + 1,ω + 2, . . .}. Addition involving

infinite ordinals is not commutative in general: 1+ω = ω, since there
is a one-to-one map that preserves the order type, but ω + 1 , ω.
Note that if β , 0, α + β is a limit ordinal if and only if β is.

Multiplication is defined recursively by the rule that α · 0 = 0,

α · (β + 1) = α · β + α , and, when γ is a limit ordinal, α · γ =
supβ<γ α · β , which can be represented in set form by

⋃
β ∈γ α · β .1

It is also possible to define multiplication using order types by

applying lexicographic order to α × β , with the least-significant

value provided first. Like addition, multiplication is generally not

commutative when one or both operands are infinite: for example,

ω · 2 consists of two copies of ω laid end-to-end, and is equal to

ω + ω, but 2 · ω consists of ω copies of 2 laid end-to-end, and is

equal to ω.
Exponentiation is defined similarly to multiplication, with α0 =

1, α β+1 = α β · α , and αγ = supβ<γ α β . Note that exponentiation

involving infinite ordinals can produce results that look strange

compared to what happens with natural numbers: for example,

2
ω = ω < ω2

and ωω
is order-isomorphic to the set of all finite

sequences of natural numbers ordered first by increasing size and

then lexicographically (or to the set of all infinite sequences that

are eventually all 0). Both 2
ω
and ωω

are countable.

As with finite ordinals, division by nonzero ordinals is possible.

Specifically, if α and β are ordinals, and β , 0, then there are unique

ordinals γ and ρ such that α = β · γ + ρ and ρ < β .
Cantor’s Normal Form Theorem (see [13, Theorem 2.26])

says that any ordinal α has a unique representation α = ωβ1 ·

k1 + · · · + . . .ω
βn · kn , where n is finite, α ≥ β1 > β2 > · · · > βn

are ordinal numbers, and k1, . . . ,kn are nonzero natural numbers.

In effect, the normal form theorem says that any ordinal number

can be represented as a sequence of finite coefficients indexed by

larger and larger powers of ω, which for our purposes will repre-

sent increasing durations of waiting for convergence. Most of the

ordinal numbers we will be dealing with in this work will be small,

with representations typically of the formω ·k + ℓ. But occasionally
it will be useful to consider larger ordinals.

2 MODEL
We use a variant of the standard population protocol model that

extends the state of each agent to include an extra flag to signal a

clock tick.

In the standard model [1], a population protocol is described by

a tuple ⟨X ,Y ,Q, I ,O,δ⟩, where X and Y are the input and output

alphabets,Q is the state space for agents, I : X → Q andO : Q → Y

1
This is an example of transfinite recursion, which generalizes ordinary recursion

by requiring a rule for handling limit ordinals. Typically a recursively-defined value

at a limit ordinals will itself be a limit (supremum in this case) of values at smaller

ordinals.

are functions translating inputs to states and extracting outputs

from states, and δ : Q ×Q → Q ×Q is a transition function used

to update the states of two agents that interact with each other. A

population consists ofn agents organized as the nodes of a directed
interaction graph. A configuration specifies the state of each

agent. A step consists of taking two agents u and v such that uv is

an edge in the interaction graph, and updating their states according

to δ . It is assumed that which pair of agents interact at each step

is controlled by an adversary, but the adversary is restricted the

global fairness condition that if some configuration C1 occurs

infinitely often, and there is a step that transforms C1 into C2, then

C2 also occurs infinitely often.

In the present work, we will assume that the interaction graph

is complete: any agent may interact with any other agent at any

time. But our extension to the standard model applies equally well

to a more restricted interaction graph.

2.1 Adding the clock
We would like to add a mechanism for detecting the passage of

time to this model, in the form of an oracle that provides extra

information to the agents. We do so by extending the state of each

agent to include a clock bit that is provided as input to δ and that

may be set to 1 by the external clock. By convention, we will not

allow a protocol to use the clock bits for its own purposes. We

enforce this by requiring that δ always outputs states in which the

clock bits are set to 0.

This effectively gives δ the typeQ × {0, 1} ×Q × {0, 1} → Q ×Q ,

where the extra bits represent the clock bit at each agent. This is

similar to the approach taken by Fischer and Jiang in their work

on self-stabilizing leader election with the Ω? oracle [9]. However,
changes to the clock bits are more restricted than in this and subse-

quent work applying oracles to population protocols (e.g., [4, 5]).

The role of the clock bit on an agent is to act as a inbox for clock

ticks, set by special clock transitions that occur only when the

protocol is looping or stuck, and reset only by subsequent protocol

transitions involving the agent.

To save space, we represent a state in which a clock bit is set

typographically using a prime (or “tick”) symbol. So a state A does

not have the clock bit set, but the corresponding state A′ does.

2.2 Clocked executions
The idea of the clock is that the system only delivers a clock tick

when the protocol has run long enough that anything that could

still happen has already happened.

Applying a simple induction to the global fairness condition

shows that if C1 is a configuration that occurs infinitely often,

then any configuration C2 that is reachable from C1 by zero or

more transitions also occurs infinitely often. Because the number

of configurations is finite, this means that any execution of a stan-

dard population protocol eventually converges to some terminal

strongly-connected component (SCC): a set of configurations S
such that all configurations in the set are reachable from all of the

others, and no transition leaves the set. Once a protocol has reached

such a set, no further progress is possible. The standard model says

that a protocol stably computes a predicate if, in this terminal

SCC, all configurations produce the correct output at all agents.

Session 9 PODC’17, July 25-27, 2017, Washington, DC, USA

433

We would like to define the clock to fire only once we have

reached a set that is a terminal SCC with respect to protocol tran-

sitions. While it would be possible to do so directly, doing so by

taking a limit over an infinite execution fragment gives the same

result in a way that interacts more cleanly with the fairness condi-

tion. Later we will recover a graph-theoretic interpretation of this

definition, to make the behavior of clocked population protocols

easier to reason about.

Let α be a limit ordinal. A set of times T is cofinal in α if, for

any β < α , there is some γ in T such that β ≤ γ < α . For example,

the times 2, 4, 8, 16, . . . are cofinal in ω. We will use this concept

to define the set of configurations that may occur (possibly with

clock bits set) at time α .
We say that configurations C1 and C2 are equivalent, written

C1 ∼ C2, if the only difference between them is in the clock bits.

We refer to the part of a configuration that omits the clock bits as

the protocol configuration; two configurations are equivalent if

and only if they have the same protocol configurations.

An execution Ξ of length α consists of a sequence of configu-

rations Cβ indexed by the ordinals β < α satisfying certain con-

sistency constraints. A configuration C is enabled following Ξ
if:

(1) α = 0 and C is the initial configuration,

(2) α = γ+1 andC follows from an application of the transition

function to two agents in the configurationCγ that appears

at time γ , or
(3) α is a nonzero limit ordinal, and the set of times at which

configurations equivalent to C occur is cofinal in α .

An execution is valid if each configurationCβ is enabled following

the prefix of Ξ of length β . Henceforth we will only consider valid

executions.

Note that we only consider executions that have a length. This

avoids complications that would arise from executions indexed

over all of the ordinals (for example, such executions would not be

definable as sets in the usual Zermelo-Fraenkel set theory).

The definition of enabled configurations at successor ordinals

matches the standard model. The definition at (small) nonzero limit

ordinals captures the intuition of waiting long enough to reach

a terminal SCC, because the only configurations enabled at time

ω · k are those that appear infinitely often during the preceding

standard execution, which are precisely those in the set to which

the protocol converges.

Which of the enabled configurations occurs at each nonzero

limit ordinal α is chosen by the adversary, the same as at succes-

sor ordinals. At limit ordinals, in addition to choosing from all

configurations cofinal in α , the equivalence condition allows the

adversary to apply clock bits to any subset of the agents, including

the empty subset. To make the clock bits useful requires imposing

restrictions on this choice, which we do by extending the standard

global fairness condition to transfinite intervals.

2.3 Fairness in clocked executions
We define an execution to be fair if, for any ordinal α , if the set of
times at which a configuration C is enabled is cofinal in α , then C
occurs cofinally in α . We define an execution fragment to be fair if

the same condition holds for any α less than or equal to the length

of the execution fragment.

A standard execution consists of times less than ω, and restrict-

ing attention to this interval yields the standard fairness condition,

since on ω, occurring infinitely often and occurring cofinally co-

incide. But over longer intervals, having C occur infinitely often

when it is enabled infinitely often is not enough.

For example, suppose that C1 → C2, and C1 occurs infinitely

often over both the intervals [0,ω) and [ω,ω ·2). We do not wish the

clock tick at timeω to change the effect of the fairness condition, but

if we only requireC2 to occur infinitely often in the entire execution,

it is possible for it to do so only in [0,ω) (or only in [ω,ω · 2)),
yielding an execution that is unfair by the standard definitionwithin

this interval. Cofinality prevents this, and indeed we can show that

the extended definition is equivalent to the standard definition over

all intervals of length ω:

Lemma 2.1. Let Ξ be a fair execution. Then if C1 → C2, and C1

occurs infinitely often in some interval [α ,α + ω), C2 also occurs
infinitely often in [α ,α + ω).

Proof. Let α +k1 < α +k2 < . . . enumerate the times at which

C1 appears in [α ,α +ω). Because the sequence k1,k2, . . . is infinite,
it is unbounded in ω, thus α + k1,α + k2, . . . is cofinal with α + ω.
SoC2 is enabled at times a + ki + 1, which are also cofinal in α +ω.
Fairness then implies that C2 occurs at times cofinal in α + ω.

Suppose that only finitely many of those times occur in [α ,α+ω).
Then there is some largest time α + k < α + ω at which C2 occurs.

But then there is no time β with α + k < β < α + ω at which C2

occurs, and C2 does not occur cofinally in α + ω, a contradiction.
So C2 occurs infinitely often in [α ,α + ω). □

In addition to generalizing the standard definition, our definition

also forces the adversary to eventually set the clock bits. Consider

an adversary that never sets a clock bit. In the interval [0,ω2), at
each time ω,ω · 2,ω · 3, . . . , there is some enabled configuration

C ′ω ·k that includes clock bits. Since there are only finitely many

possible such configurations, there is some specific configuration

C ′ that is enabled at infinitely many times of the form ω · k . These
times are cofinal in ω2

, so C ′ must also occur cofinally in ω2
. It

follows that in ω2
, the clock ticks infinitely often.

Note that this does not provide any particular guarantee on when

the clock bits arrive: just as the adversary may delay a protocol

transition for any finite amount of steps, the adversary may simi-

larly delay a particular limit configuration over any finite number

of limit times. But it cannot do so forever.

3 TRANSITION GRAPHS
Working directly with transfinite executions is awkward. In this sec-

tion, we give an alternative characterization of a clocked population

protocol’s executions based on paths through a directed transition
graph, where each node in the graph represents a configuration

and each edge represents either a transition between configura-

tions or the delivery of a clock tick taking some configuration to

an equivalent configuration.

The transition graph is constructed recursively, where each layer

Gk of the recursion adds transitions that can occur at times that

are a multiple of ωk
. The bottom layer G0 contains an edge for

Session 9 PODC’17, July 25-27, 2017, Washington, DC, USA

434

all transitions that can occur in one time unit, as the result of

applying the protocol’s transition relation δ to two agents. We

writeC1 →0 C2 if such an edge appears inG0, and writeC1 →
∗
0
C2

if there is a (nonempty) directed path fromC1 toC2 inG0. Similarly,

we will write C1 →k C2 or C1 →
∗
k C2 if there is a single edge or

directed path, respectively, from C1 to C2 in Gk .

To construct Gk+1 from Gk , we add edges representing the ar-

rival of clock ticks at multiples of ωk
. To do so, we need to detect

when some configuration inGk might occur cofinally in an interval

[α ,α + ωk) in a fair execution.

At minimum, we need C →∗k C , so that C can occur infinitely

often. But this is not enough: we also need it to be the case that

the fairness condition does not drive us to a state C2 from which

we cannot return to C . This essentially means that no such state

C2 can be reachable from C at all, or in other words that C is an

element of a terminal strongly-connected component in Gk .

Formally, define Gk+1 = (Vk+1,Ek+1), where Vk+1 = Vk is the

set of all configurations of the protocol (including clocked configura-

tions), andEk+1 = Ek∪
{
(C,C ′) �� C ∼ C ′ and C is in a terminal SCC in Gk

}
.

We will refer to the edges in Ek+1 \ Ek as level k + 1 edges.
The full transition graph G is just the union of all Gk for k ∈ N.

Note that if we restrict ourselves to configurations of a fixed size, all

but a finite number of these graphs are identical, because at some

point we run out of edges to add. But for simplicity we will imagine

each Gk is an infinite graph that represents all possible population

sizes, soG will in general be a limit

⋃∞
k=0Gk . Fortunately, we do not

have to go past ω to compute G, since we only consider protocols

with finite populations.

Theorem 3.1. Given a clocked population protocol, letG0,G1, . . .

be the family of transition graphs defined as above, and consider some
fair execution Ξ.

The following hold for any configurations C and D:

(1) If C occurs at time α , and D occurs at time β ∈ [α ,α + ω),
then there is a path from C to D in Gk .

(2) IfC occurs cofinally in Ξ over some interval [α ,α +ωk + 1),
then D occurs cofinally over the same interval if and only if
there is a path from C to D in Gk .

(3) IfD occurs in [α ,α+ωk+1), thenD occurs cofinally in [α ,α+
ωk+1) if and only if D is in a terminal strongly-connected
component of Gk .

Proof. By induction on k .
When k = 0,G0 consists only of transitions that do not involve

clock bits, and the interval [α ,α + ωk+1) contains only successor

ordinals. We can show:

(1) There is a path inG0 fromC to each configurationCβ with

α ≤ β < α + ωk+1 = α + ω. The proof is by induction

on β . The base case is β = α ; use the empty path. For the

induction step, go from β to β + 1 by extending the path

from C = Cα to Cβ by the edge from Cβ to Cβ+1.

(2) If there is no path fromC toD inG0, then let β be some time

at which C occurs in [α ,α + ω). Then from the preceding

claim, D does not occur in [β, β + ω) = [β,α + ω) and in

particular there is no time γ such that β < γ < α + ω at

which D occurs. So D does not occur cofinally in [α ,α +ω).

Alternatively, suppose there is a path from C to D in

G0. We will show that D occurs cofinally in [α ,α + ω)
by induction on d (C,D). If d (C,D) = 0, then D = C and

the result holds trivially. If d (C,D) > 0, let B be the last

configuration on a shortest path fromC toD inG0. Then by

the induction hypothesis, B occurs cofinally in [α ,α + ω).
For each time γ at which B occurs, D is enabled at time

γ + 1, so D is enabled cofinally in [α ,α + ω), and because

the execution is fair, it must occur cofinally as well.

(3) Let S be the strongly-connected component of G0 that

contains D. If S is not terminal, there is an outgoing edge

from S to some configuration B, such that there is no path

from B to D (since B is not in the same strongly-connected

component). By the preceding claim, if D occurs cofinally

in [α ,α + ω), then so does B. But then, since there is no
path from B to D, D cannot occur cofinally in [α ,α + ω).

Conversely, suppose there is no outgoing edge from S .
From (1), once D occurs at some time β ∈ [α ,α + ω), only
configurations B reachable fromD can occur in [β ,α+ω) =
[β , β +ω). Since there are only finitely many such B, one of
them occurs infinitely often and thus cofinally in [β , β +ω).
But since B is in the same SCC as D, there is a path from

B to D, and so D occurs cofinally in [β , β + ω) (and thus

[α ,α + ω) by (2).

For larger k , suppose that the claim holds for k − 1. We will

essentialy repeat the argument for the base case G0, but now we

must deal with limit ordinals and edges corresponding to limit

transitions. Fortunately we can refer to the preceding arguments

to handle the successor ordinal cases.

(1) For the first claim, we will again show by induction on

β ∈ [α ,α + ωk+1) that there is a path in Gk from C = Cα
to Cβ . The base case β = α and the induction step for

successor ordinals β + 1 are the same as for k = 0. This

leaves the case where β is a limit ordinal.

Expand β as α +ωk ·q+ρ, where the quotient q is finite

and the remainder ρ < ωk
. We will first argue by induction

on q that there is a path in Gk from Cα to Cα+ωk ·q . If

q = 0, this is trivial. Otherwise, by the induction hypothesis

on q there exists a path in Gk from Cα to Cα+ωk ·(q−1) .

For Cα+ωk ·q to be enabled at α + ωk · q, there must be

a configuration C∗ ∼ Cα+ωk ·q that occurs cofinally in

[α+ωk ·(q−1),α+ωk ·q). From the induction hypothesis on

Gk−1, this can only be the case if C∗ appears in a terminal

SCC of Gk−1, in which case there is an edge in Gk from

C∗ to Cα+ωk ·q . In addition, the occurrence of C∗ in this

interval also implies that there is a path in Gk−1 form Cα
to C∗. Stitching this path and edge onto the previous path

gets us the claimed path in Gk to Cα+ωk ·q .

We still have to deal with finding an extension from

Cα+ωk ·q toCβ = Cα+ωk ·q+ρ , but as ρ < ωk
, β ∈ [α +ωk ·

q,α + ωk · q + ωk), and the induction hypothesis on Gk
implies that such a path exists.

(2) If there is no path fromC to D inGk , the argument reduces

to the preceding claim as in the G0 case.

Session 9 PODC’17, July 25-27, 2017, Washington, DC, USA

435

If there is a path from C to D in Gk , we again use in-

duction on the length ℓ of the path to show that every

configuration on the path occurs cofinally in [α ,α +ωk+1).
This holds trivially when ℓ = 0. for larger ℓ, let B be the

last configuration on the path before D. From the induc-

tion hypothesis on ℓ we have that B occurs cofinally in

[α ,α + ωk+1). Letm ≤ k be the smallest value such that a

B → D edge appears in Gm .

Ifm = 0, then there is a protocol transition from B to D,

and fairness gives that D occurs cofinally in [α ,α +ωk+1),
since it is enabled in every successor to a time at which B
occurs. For largerm, we have from the definition of Gm
that B ∼ D, and B appears in a terminal SCC in Gm−1.

Now apply part (3) to show that B occurs cofinally in any

interval [γ ,γ + ωm−1] such that B occurs at time γ . Each
such interval enables D at time γ +ωm , and because the set

of times γ is cofinal in [α ,α + ωk+1), so is the set of times

γ + ωm at which D is enabled. So fairness says D occurs

cofinally in [α ,α + ωk+1).
(3) If the SCC S ofGk containing D is not terminal, then there

is some path from D to a configuration B not in S , so from

(1) we reach B and can’t return.

Alternatively, if S is terminal, then some state B ∈ S oc-

curs in infinitely many intervals [α +ωk ·ℓ,α +ωk · (ℓ+1)).
It is not necessarily the case that B is in a terminal SCC

in Gk−1, but there is some configuration reachable from

B that is, and since there are only finitely many possible

configurations, one of these configurations A must be cofi-

nal in [α + ωk · ℓ,α + ωk · (ℓ + 1)). That configuration A
is in the same SCC S in Gk as D, because there is a path
to it from D in Gk and S is terminal. So for each interval

[α +ωk · ℓ,α +ωk · (ℓ+ 1)) in whichA occurs, D is enabled

at α +ωk · (ℓ + 1), and since these times occur cofinally in

[α ,α + ωk+1), by fairness, so does D.

□

Transition graphs give a translation between transfinite execu-

tions and the finite executions they represent. In this translation,

transition along edges not in G0 correspond to clock interrupts

that cut off a looping computation and advance it to some future

limit configuration. Each “phantom” sequence of transitions that is

omitted when this occurs in effect acts as a certification that when

a clock signal of a given level arrives, the current configuration

could have recurred forever. By recognizing terminal SCCs directly,

the transition graph approach gives an alternative certification that

can be implemented in finite time on a conventional computer.

We can also imagine implementing these clock ticks in practice

by delivering a tick from some external source after a sufficiently

long time interval, on the assumption that any reasonable physical

implementation of a population protocol would converge with high

probability in a bounded number of transitions.

3.1 Computation of transition graphs
Because population protocols preserve the number of agents, each

graphGk is made up of non-communicating subgraphsGn
k for each

population size n. Assuming the interaction graph of a popula-

tion is complete (so that we can represent configurations with the

same population counts as a single vertex), we can compute these

subgraphs (and their limits!) efficiently, and use them to answer

questions about population protocols running on particular inputs

or input sizes.

Theorem 3.2. For any population protocol withm agent states and
a complete interaction graph, the transition graphs Gn

0
, . . .Gn

n4m =

Gn can be computed in time polynomial in n.

Proof. Givenm different agent states, there are fewer than n2m

vertices in eachGn
k , where the 2 comes from the clock bit. For fixed

m, this is polynomial in n.
Computing the edges in Gn

0
can easily be done in polynomial

time by examining the transition function. Computing the added

edges in Gn
k+1 requires finding the terminal SCCs of Gn

k , a linear-

time operation using standard graph algorithms. Since Gn
k+1 = G

n
k

implies Gn
ℓ
= Gn

k for all ℓ ≥ k , we must add at least one edge to

Gn
k+1 at each step to keep going; after fewer than n4m steps we will

have either added all possible edges or reached the limit; in either

case, Gn
n4m = G. □

It follows that, in polynomial time, we can answer any questions

about reachability, output-stability, and so forth that can be deter-

mined by applying standard graph algorithms to Gn
. In particular,

given an output-stable clocked population protocol that decides

some language L, we can compute Gn
, and for any input configu-

ration determine the output in any terminal SCC reachable from

some initial configuration C . This puts computation by clocked

population protocols firmly in P, even if we allow unbounded trans-

finite time (in real life, arbitrarily deep layers of clocks) for them to

complete.

But we can say more than this. The same argument that shows

that computingGn
k can be done in time polynomial in n also shows:

Theorem 3.3. For any population protocol with a complete in-
teraction graph and any fixed k , whether there is a path from C to
D in the transition graph Gn

k can be computed in nondeterministic
O (logn) space.

Proof. Because of the nondeterminism, this problem reduces

to testing if there is an edge from C to D in Gn
k . Internally, we

represent C and D as a list of agent counts (thus taking O (logn)
space to store each), although a logspace machine is smart enough

to convert a vector of agents states into such a list and store the

result if needed.

For k = 0, this just involves checking if the counts of each state in

C and D differ by an amount that is consistent with some transition

in δ , which is easily done in space O (logn).
For larger k , we make heavy use of the Immerman-Szelepcsényi

Theorem [12, 17], which says that NL = coNL and more generally

implies that NLNL = coNLNL = NL [12]. This means that as long

as we recurse only to bounded depth, we can use NL subroutines

in a NL or coNL computation and stay in NL.
In particular, to determine if C → D appears in Gn

k , we must

check (a) if it is already in Gn
k−1, and if not, check (b) if C ∼ D and

C is in a terminal SCC of Gn
k . Testing if C ∼ D is trivial. Testing if

Session 9 PODC’17, July 25-27, 2017, Washington, DC, USA

436

C is in a terminal SCC requires testing for all B such that there is a

path fromC to B inGn
k−1 if there is also a path from B toC inGn

k−1.

Fortunately, checking if there is a path from C to B in Gn
k−1 is

easily done in NLNL = NL (guess each step of the path nondeter-

ministically, and call the NL oracle for edges in Gn
k−1 to verify that

each step is an edge), and similarly testing for the non-existence of

a path from B to C is easily done in coNLNL = NL. This leaves the
universal quantifier over B, which puts the problem of detecting if

C is in a terminal SCC in coNLNL, which is again equal to NL. □

Just as Theorem 3.2 puts all languages computed by clocked

population protcols in P, Theorem 3.3 puts all languages computed

by clocked population protocols using at most ωk
time in NL. In

§4.2, we will use this to show that for any fixed k , a clocked popu-

lation protocol that runs in time ωk
can be replaced by a clocked

population protocol that runs in time ω2
: one level of clock ticks is

always enough.

4 PROGRAMMING A CLOCKED
POPULATION PROTOCOL

Clocked population protocols are more powerful than standard

population protocols. In this section, we give some applications of

this extra power.

4.1 Leader election
Standard population protocols support leader election from an ini-

tially uniform state by fratricide: initially, each agent starts in a

leader state L, and the transition rule (L,L) → (L, F) eventually
turns all but one leader into a follower. But the winning leader

cannot detect that this condition has occurred, and previous pro-

tocols that have used leader election as an initial stage have had

to include a mechanism for restarting the computation after each

remaining candidate is eliminated.

With a clock, the eventual leader can detect that it has won,

because it can only receive a clock tick in a terminal SCC of the

transition graph, and the only terminal SCCs are the one-leader

configurations. But we can do even better than this. Fischer and

Jiang [9] demonstrated that a standard population protocol cannot

elect a leader starting from an arbitrary initial state, and proposed

an Ω? oracle that eventually signals when there is no leader in the

current configuration. We can get the same effect by using clock

ticks.

Consider a protocol with three states: leader L, candidate C ,
and follower F . We use the following transition table:

L,L → L, F

L,C → L, F

C,C → C, F

F ′,x → C,x

C ′,x → L,x

As usual, we assume that the initial configuration does not have

any clock bits set. But we place no other restriction on the states of

the agents. Note that we are using the convention defined earlier

that F ′ (for example) is the state F with the clock bit set.

Theorem 4.1. Starting from any initial configuration with no
clock bits set, the above protocol produces in time bounded by ω2

an agent in state L′. Furthermore, if an agent reaches state L′ in the
above protocol, it is the only agent in the population in state L′ or L.

Proof. Let Gk be the transition graphs for this protocol from

§3. Examining the transition relation shows that terminal SCCs

in G0 come in three varieties (up to symmetry): a configuration

CF consisting of all followers, and configuration CC containing

a single candidate and the rest followers, and a configuration CL
containing a single leader and the rest followers. In each case, no

agent in these stable configurations has a clock bit set.

If we reach CF , then a configuration with some F ′ is enabled at

time ω and at each multiple of ω thereafter until F ′ appears. By
fairness, eventually there is some ω · ℓ at which at least one F ′

does so. The next transition involving this agent falls produces a

configuration with at least one candidate, and the rest of the agents

followers. The terminal SCC reachable from such a configuration

consists of CC .
If we reach CC , then a configuration with C ′ is again enabled at

each following multiple of ω until it occurs. When it does so, the

next transition produces a single leader, and we reach the stable

configuration CL after finitely many steps.

If we reach CL , then the same argument as before shows that

after some time ω · ℓ, L′ appears.
Combining these cases shows that L′ appears after ω · ℓ < ω2

time, where ℓ is some finite (though unbounded) quantity.

It remains to show that when L′ occurs, no other agent is in

state L or L′. Under the assumption that no clock bits are set in

the initial configuration, L′ can only occur at a limit ordinal α
before which a configuration containing L or L′ occurs cofinally.
But since multiple leaders are eliminated after finitely many steps,

and no transition (including clock-tick transitions) ever increases

the number of leaders, any configuration that occurs cofinally over

a non-finite interval has at most one leader. □

4.2 Computing symmetric predicates in NL
Because agents with the same state are indistinguishable, the config-

uration of a population protocol with a complete interaction graph

can be summarized by giving counts of the numbers of agents in

each state. This essentially limits the population to storing data in

unary, in the form of counters, and effectively limits population

protocols to space logarithmic in the size of the population. Follow-

ing the general approach of the universal randomized population

protocol with a leader of Angluin et al. [2], we can represent a

counter machine in the style of Minsky [15] by using the unique

leader L remaining from the preceding construction as a finite-state

controller, and expressing counter values up to n as the sum of bits

scattered across all n agents. But where Angluin et al. were limited

by the need to build a randomized phase clock internally out of

the agents themselves, by using an external clock we can eliminate

the possibility of failure and compute any symmetric predicate in

NL on the initial agent states.

Session 9 PODC’17, July 25-27, 2017, Washington, DC, USA

437

Minsky’s construction shows that counter machines can simulate

Turing machines, but it requires that the finite-state controller be

able to test a counter for zero in addition to incrementing or decre-

menting it. Incrementing a counter that is not already at its max-

imum value consists of executing the transition (L1, 0) → (L2, 1)
(where we omit extraneous parts of the states from the descrip-

tion), while decrementing a counter consists of execution (L1, 1) →
(L2, 0). In both cases, if there is not agent with the appropriate

value 0 or 1, the operation never happens.

This is a problem for standard population protocols, because

they have no mechanism to detect when they have stalled. But it

is not a problem with clocks: a protocol that converges to a fixed

configurationwill remain in that configuration at the next clock tick,

and the fairness condition enforces that a clock tick is eventually

delivered to the leader. So the leader can test for 0 by attempting to

decrement a counter and waiting until it either succeeds or fails. (If

it succeeds, an increment will restore the previous state, allowing

non-destructive tests.)

A transition relation that uses clock ticks to support a decrement

operation that moves the leader from state L1 to L2 if successful
and to L3 can be as simple as this:

L1, 1→ L2, 0

L′
1
,x → L3,x

(Here x represents an arbitrary state, and transitions involving pairs

not described are assumed to have no effect.)

Each such counter can count up to n, where increments and

decrements that do not hit the bounds take < ω time and those

that hit the bounds take < ω2
time. By using multiple counters as

separate digits, we can represent values up to nc for any fixed c .
The costs of increment and decrement operations may now be only

< ω2
given the need to detect overflow or underflow on lower-order

digits.

Given annc -bounded counter, we can use it to represent a (c lgn)-
bit stack for binary values, where popping from the stack is done by

division by two (repeatedly decrement the counter twice if possible,

and increment an auxiliary counter for each pair), and pushing to

the stack is done by the reverse operation of multiplying by two

and adding the new value. Two such stacks make a Turing machine

tape, and the leader agent can act as the finite-state controller.

For the input tape, count the number of agents in each input

state, and use a counter to represent the input tape head position.

We can then pretend that the input tape is sorted (because we can

only compute symmetric languages). If the TM controller asks what

symbol lies under the current head position, we can sum up the

counter values for each possible symbol until the total exceeds the

simulated head position.

So far this gets us the symmetric languages in L. To get NL, we
allow the leader to both make nondeterministic choices and to reset

the computation to the beginning after reaching a rejecting state.

Nondeterminism does not require modifying the transition function

to be nondeterministic; instead, we can use the nondeterministic

scheduling of which agent the leader meets next as a supply of

nondeterminism, and observe that fairness gives that if there exists

an accepting computation path, we will eventually find it. By map-

ping all other states that the accepting state to a rejecting output,

we get an output-stable simulation of a nondeterministic logspace

machine.

Careful accounting of the counter operations shows that the

time per step of this machine is < ω2
. Because we converge to

a terminal SCC (either an accepting state or an endless loop of

rejecting computation paths) in finitely many steps, the total time

to reach an output-stable configuration is also < ω2
. In the next

section, we show that it is possible to detect when an output-stable

configuration occurs.

4.3 Detecting stable outputs
The ability to simulate NL predicates means that we can detect

when a clocked population protocol has reached an output-stable

configuration, provided it does so in time < ωk
for some fixed k .

This means that unlike standard population protocols, we can com-

pose clocked population protocols sequentially, using the output of

one protocol as the input to the next.

Here is the idea: At any time, the leadermay nondeterministically

choose to test for an output-stable configuration. To do so, the

leader switches to transitions of the form (L,x) → (L, x̂), where
x̂ represents a “frozen” version of state x . Eventually, no more

unfrozen agents remain, and the protocol enters a configuration

that is stable until the next clock tick.

Upon receiving a clock tick, the leader can tell that it has success-

fully frozen all the agents, and proceeds to the verification step. The

frozen configuration C will be output-stable if every configuration

reachable from it in < ωk
time has the same uniform output on

all agents. We now observe that the NL simulation of the preced-

ing section allows the leader to perform an NL computation of its

choosing on the frozen state in < ω2
time, so we need only find a

way to test output-stability in NL. Using an NL machine, we can

nondeterministically guess the common output x . The question

then becomes, is there a sequence of transitions starting from the

frozen state that gives some agent a different output y , x? The
existence of such a sequence is testable in NL by Theorem 3.3: we

nondeterministically guess a bad configuration D and then apply

the theorem to check if D is reachable from C in < ωk
time. But

what we want to know is that no such sequence exists. This ques-

tion is in coNL, which puts output-stability in LcoNL. But this class
is equal to NL by the Immerman-Szelepcsényi Theorem.

This means that whenever the leader freezes the configuration,

it can use the procedure of the preceding section to try one branch

of the NL computation that tests output-stability (note that this

will require additional state in the agents separate from the frozen

states). If the configuration is in fact output-stable and the protocol

picks the right branch, we are done. If not, the leader reverses the

freezing process and restarts the underlying protocol.

4.4 Reduction to < ω2 time
We can also apply Theorem 3.3 to not only detect convergence

of a population protocol that runs in < ωk
time but to reduce its

cost to < ω2
time. Given a protocol that runs in < ωk

time, we

know that it computes a symmetric function in NL. We can thus

ignore the original protocol and simulate the protocol using the

method of §4.2 to compute the same predicate, output-stably, in

time < ω2
. Adding the convergence detector of §4.3 gives us the

Session 9 PODC’17, July 25-27, 2017, Washington, DC, USA

438

ability to detect when the output has stabilized: if we fire it only

after clock ticks, we can guarantee that it runs only finitely many

times using < ω2
time each, for a total cost that is still < ω2

. So we

can in fact compute any predicate that is stably computable by a

clocked population protocol that runs in < ωk
time for any fixed k

in < ω2
time.

We summarize this result as:

Theorem 4.2. Any predicate computable by a clocked population
protocol in < ωk time, for fixed k , is computable in < ω2 time.

5 RELATION TO OTHER ORACLES
The clock ticks added in the clocked population protocol model are

a kind of oracle, providing the protocol with information (“you are

stuck”) that it cannot obtain for itself. We have seen that for the

purposes of leader election, clock ticks are at least as powerful as

the Ω? oracle of Fischer and Jiang. A natural question is whether

other kinds of oracles can be simulated using clock ticks or vice

versa.

5.1 Higher-order clock ticks
We think of the multiples of ω as the smallest clock interval in the

system, while multiples of larger ordinals like ω2
represent longer

intervals. The clock mechanism by itself does not allow the agents

to distinguish between a tick that arrives at a multiple of ω that is

not a multiple of ω2
from one that arrives at a multiple of ω2

. An

obvious extension is to add 2, 3, . . . ,k values to the existing 0 and

1 clock values so that a clock tick i is delivered only at times that

are multiple of ωi
.

But this is not necessary. Having elected a unique leader, we can

use it together with a counter implemented across the other agents

to simulate such higher-order clock ticks for multiples of ωk
up to

the maximum value of the counter.

Let x represent the value in the counter. Initially, x is 0. When

the leader receives a clock tick, it increments x and then resets it to

zero. (As part of the reset operation, it may also copy the counter

value somewhere else for later use.)

Theorem 5.1. Using the above mechanism, the leader increments
the counter to k following a clock tick only at times that are multiples
of ωk .

Proof. By induction on k . The base case is k = 0; all limit

ordinals are multiples ofω0+1 = ω, so the hypothesis holds trivially.
For larger k , observe that x = k can occur at α if and only if

configurations with x = k are cofinal in α . Each such configuration

must occur at a time that is a multiple ofωk
. Expand α asωk+1 ·β +

ωk · q + ρ, where q is finite and ρ < ωk
. If either γ or ρ is nonzero,

there there exists a time ν less than α such that no multiples of ωk

occur after ν . But then configurations with x = k are not cofinal in

α . It follows that q = ρ = 0 and α is a multiple of ωk+1
. □

Note that these higher-order clock ticks are not the strongest

we can imagine: for example, when the leader sees x = 2, it may be

that the current time is ω3
or some even larger power of ω. It is not

clear whether providing an exact measure of the exponent would

give a protocol more power directly, although if k is bounded by a

constant, we can extend the transition graph construction from §3

to enforce this constraint within the transition graph model, and

compute the same predicates as a clocked population-protocol with

these stronger higher-order ticks using the same approach as in

Theorem 4.2.

5.2 Absence detectors
The absence detector of Michail and Spirakis [14] allows agents

to determine precisely which states are present in the population at

the time of encountering the detector. This allows construction of

counters as in §4.2, and generally allows computation of symmetric

predicates in NL.
Clock ticks are weaker than absence detectors in the sense that

delivery of a clock tick can only indicate that no progress can be

made. This can be used to test for the absence of a particular state

q by a leader that changes state if it encounters a q, but only if no

other activity is ongoing in the population. This suggests simulating

an absence detector directly by applying the same freezing-and-

unfreezing method used in §4.3, but the cost of triggering this

mechanism routinely during the execution of a larger protocol

might be high.

On the other hand, it is straightforward to modify the transition

graph construction of §3 to include an absence detector, and an

NL machine that has access to the entire population count can

easily implement an absence detector while simulating a population

protocol. So the fact that clocked population protocols can compute

functions in NL gives them the same computational power as a

population protocol with an absence detector.

6 CONCLUSIONS
We have shown that allowing an external clock to deliver ticks to a

stuck population protocol extends its power dramatically, giving it

the ability to compute any symmetric predicate in NL. This gener-
alizes previous results [1, 14, 16] that obtained similar power using

more specialized mechanisms to detect convergence.

By using a model of transfinite executions over time intervals

represented using ordinal arithmetic, we showed that the transition

rules and fairness condition of the standard model extend in a

straightforward way to these clocked population protocols. We also

gave a representation of these transfinite executions using paths

over finite transition graphs, demonstrating that this model both

corresponds to a clock mechanism that could be implemented in

practice in finite time, that the added power still remains plausibly

within P, and that clocked population protocols have a capability for
introspection, allowing clocked population protocols to compute

properties of the executions of other clocked population protocols

and related models by applyingNL computations to their transition

graphs.

Our results apply to population protocols with complete interac-

tion graphs, the weakest form of the standard model. An interesting

question is how clock bits and their representation in terms of trans-

finite fair executions would interact with population protocols with

less symmetric interaction graphs, or even with other distributed

computing models providing by their own eventual progress guar-

antees.

Session 9 PODC’17, July 25-27, 2017, Washington, DC, USA

439

ACKNOWLEDGMENTS
I would like to thank the anonymous referees for their many helpful

comments, including a suggestion to consider in more detail direct

simulations of absence detectors, a topic not examined in earlier

versions of this paper.

REFERENCES
[1] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Per-

alta. 2006. Computation in networks of passively mobile finite-state sensors.

Distributed Computing (March 2006), 235–253.

[2] Dana Angluin, James Aspnes, and David Eisenstat. 2008. Fast computation by

population protocols with a leader. Distributed Computing 21, 3 (Sept. 2008),

183–199.

[3] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. 2007. The

computational power of population protocols. Distributed Computing 20, 4 (Nov.

2007), 279–304.

[4] Joffroy Beauquier, Peva Blanchard, and Janna Burman. 2013. Self-stabilizing

leader election in population protocols over arbitrary communication graphs. In

International Conference On Principles Of Distributed Systems. Springer, 38–52.
[5] Joffroy Beauquier, Peva Blanchard, Janna Burman, and Oksana Denysyuk. 2016.

On the Power of Oracle Ω? for Self-Stabilizing Leader Election in Population

Protocols. In International Symposium on Stabilization, Safety, and Security of
Distributed Systems. Springer, 20–35.

[6] Ioannis Chatzigiannakis, Othon Michail, Stavros Nikolaou, Andreas Pavlogian-

nis, and Paul G Spirakis. 2010. All symmetric predicates in NSPACE (n 2) are

stably computable by the mediated population protocol model. In International
Symposium on Mathematical Foundations of Computer Science. Springer, 270–281.

[7] Ioannis Chatzigiannakis, OthonMichail, Stavros Nikolaou, Andreas Pavlogiannis,

and Paul G. Spirakis. 2011. Passively mobile communicating machines that use

restricted space. Theor. Comput. Sci. 412, 46 (2011), 6469–6483. https://doi.org/10.
1016/j.tcs.2011.07.001

[8] Ioannis Chatzigiannakis, Othon Michail, and Paul G Spirakis. 2009. Mediated

population protocols. In International Colloquium on Automata, Languages, and
Programming. Springer, 363–374.

[9] Michael Fischer and Hong Jiang. 2006. Self-stabilizing leader election in networks

of finite-state anonymous agents. In International Conference On Principles Of
Distributed Systems. Springer, 395–409.

[10] Rachid Guerraoui and Eric Ruppert. 2009. Names trump malice: Tiny mobile

agents can tolerate byzantine failures. In International Colloquium on Automata,
Languages, and Programming. Springer, 484–495.

[11] Joel David Hamkins and Andy Lewis. 2000. Infinite time Turing machines. The
Journal of Symbolic Logic 65, 02 (2000), 567–604.

[12] Neil Immerman. 1988. Nondeterministic Space is Closed Under Complementation.

SIAM J. Comput. 17, 5 (1988), 935–938. https://doi.org/10.1137/0217058
[13] Thomas Jech. 2002. Set Theory: The Third Millenium Edition: revised and expanded.

Springer.

[14] Othon Michail and Paul G Spirakis. 2015. Terminating population protocols via

some minimal global knowledge assumptions. J. Parallel and Distrib. Comput. 81
(2015), 1–10.

[15] Marvin L. Minsky. 1961. Recursive unsolvability of Post’s problem of “Tag” and

other topics in theory of Turing machines. Annals of Mathematics 74, 3 (Nov.
1961), 437–455.

[16] David Soloveichik, Matthew Cook, ErikWinfree, and Jehoshua Bruck. 2008. Com-

putation with finite stochastic chemical reaction networks. natural computing 7,

4 (2008), 615–633.

[17] Róbert Szelepcsényi. 1988. The method of forced enumeration for nondetermin-

istic automata. Acta Informatica 26, 3 (1988), 279–284. https://doi.org/10.1007/
BF00299636

[18] James F. Thomson. 1954. Tasks and super-tasks. Analysis 15, 1 (1954), 1–13.
[19] Johann v. Neumann. 1923. Zur Einfűhrung der transfiniten Zahlen. Acta Univer-

sitatis Szegediensis 1 (1923), 199–208.

Session 9 PODC’17, July 25-27, 2017, Washington, DC, USA

440

https://doi.org/10.1016/j.tcs.2011.07.001
https://doi.org/10.1016/j.tcs.2011.07.001
https://doi.org/10.1137/0217058
https://doi.org/10.1007/BF00299636
https://doi.org/10.1007/BF00299636

	Abstract
	1 Introduction
	1.1 Other related work
	1.2 Ordinals and ordinal arithmetic

	2 Model
	2.1 Adding the clock
	2.2 Clocked executions
	2.3 Fairness in clocked executions

	3 Transition graphs
	3.1 Computation of transition graphs

	4 Programming a clocked population protocol
	4.1 Leader election
	4.2 Computing symmetric predicates in NL
	4.3 Detecting stable outputs
	4.4 Reduction to < ω2 time

	5 Relation to other oracles
	5.1 Higher-order clock ticks
	5.2 Absence detectors

	6 Conclusions
	References

